Какая рыба обладает самым мощным электрическим зарядом. Как устроены электрические рыбы? Где у рыб электростанция

О существовании удивительных морских скатов и пресноводных сомов, способных наносить людям довольно неприятные и труднообъяснимые «удары», знали ещё древние греки и египтяне. Изображения этих сомов и скатов и сейчас ещё можно увидеть на стенах древнеегипетских гробниц.

Римляне считали, что скаты выделяют в воду какое-то ядовитое вещество. Было замечено, что «яд» выделялся, только когда появлялась добыча или на рыбу кто-то нападал. «Яд» действовал и на человека, причём прямо через кожу, но не был смертелен. Прикосновение к рыбе ощущалось как удар, рука невольно отдёргивалась. В

Древнем Риме таких скатов держали в специальных бассейнах и пытались использовать для лечения болезней. Больных заставляли прикасаться к скату, и от его «ударов» они будто бы выздоравливали.

Тайна скатов была разгадана сравнительно недавно. Оказалось, что эти рыбы яда не выделяют, а обороняются и нападают с помощью электричества. Напряжение разрядов электрического сома и электрических скатов достигает 220 В. (Такое же напряжение тока существует в городской бытовой электросети.)

Электрические скаты (их около 30 видов) - малоподвижные существа, плохо и неохотно плавающие. Большую часть жизни они проводят, зарывшись в песок или ил, оживляясь только для того, чтобы разрядить свои «батареи» и перекусить тем, что подвернулось. Свою основную добычу - мелких рачков и червей, поражённых электрическим разрядом, они подбирают без особой спешки. На крупную, уже оглушённую рыбу скаты бросаются стремительно и продолжают генерировать электрические разряды, чтобы окончательно добить её.

Электрический угорь (он совсем не «родственник» прочих угрей и назван так только за сходную форму тела), обитающий в пресных водах Южной Америки, - рыба с самым сильным электроразрядом. Размеры её немалые - до 1,5 м, а иногда и до 3 м в длину при весе до 20 кг. Напряжение создаваемых электрическим угрём разрядов достигает 600 В. Его разряд может оглушить даже крупных зверей, а мелкие животные погибают мгновенно. На языке местных индейцев эти угри называются «арима», что значит «лишающие движения». Индейцы хорошо знают опасных рыб и не рискуют переходить вброд реку, где они обитают.

Электрические органы - это видоизменённые мышцы. При сокращении любых мышечных волокон всегда возникают слабые электрические разряды. Особенность электрических органов в том, что их мышечные волокна «подключены» (т. е. соединены между собой) не параллельно, а последовательно, поэтому их напряжение суммируется, достигая огромных величин. Вес электрических органов составляет от четверти до трети веса рыбы!

Многие рыбы не имеют « электростанций », но обладают «электрическим чутьём». Например, миноги с его помощью обнаруживают добычу. Спрятаться от них невозможно. Даже у затаившихся рыб дыхательные мышцы жаберных крышек продолжают сокращаться, одновременно генерируя слабые электрические импульсы. Их и улавливают миноги. Это чутьё особенно полезно при охоте в мутной воде.

Африканский электрический сом.

Американский электрический угорь.

Электрический скат.

Идеи различных изобретений человек, как правило, находил в окружающей его природе. Так, в первых проектах летательных аппаратов копировалось крыло птицы или летучей мыши. К изобретению самозатачивающихся инструментов привело исследование зубов грызунов. Создаются искусственные покрытия для подводных лодок, копирующие кожу дельфина, которая позволяет ему передвигаться в воде с большой скоростью при относительно небольших мышечных усилиях.

Помимо копирования биологического прототипа при конструировании различных систем возможно (и, видимо, наиболее целесообразно) использование самого принципа действия, разработанного природой в процессе эволюции. Работы в этом направлении привели к возникновению одной из самых молодых наук - бионики, в настоящее время быстро развивающейся.

Бионика - это наука о системах, копирующих функции живых организмов, о системах, которым присущи специфические характеристики природных систем или которые являются их аналогами. На практике бионика - это наука об использовании знаний о живых системах при решении тех или иных технических проблем.

Особенности реакций рыб на различные поля электрического тока послужили основой для разработки различных устройств, управляющих поведением рыб. Еще в 1919 г. ученые высказали мысль, что лов рыбы с применением электричества открывает широкие перспективы в ведении прудового хозяйства. Вначале использовалось лишь оглушающее действие электрического тока. В дальнейшем стали применяться агрегаты, привлекающие или отпугивающие рыбу благодаря создаваемым в воде электрическим полям различных параметров.

В настоящее время такие агрегаты с успехом используются на практике в пресноводных водоемах: реках, прудах, озерах, водохранилищах. Один из способов электролова - оснащение обычных сетных орудий лова (например, тралов) электродами, привлекающими рыбу в зону действия орудия. Так работают, например, отечественные электротраловые суда ПЭТС-150Б, ведущие лов на Рыбинском и Цимлянском водохранилищах с 1965 г. Во внутренних водоемах ГДР с 1967 г. применяется электрифицированный трал, в основном предназначенный для лова угря.

Кроме электролова с использованием различных сетей, существует так называемый бессетевой электродов, основанный на использовании анодной реакции рыб для их привлечения, концентрации, частичного обездвиживания в результате электронаркоза. Рыба извлекается из воды с помощью механического устройства или рыбонасоса. Таким образом работает, например, отечественная установка ЭЛУ-1 для электролова, размещаемая на двух лодках. С помощью специальной аппаратуры вырабатывается постоянный ток напряжением до 520 В, который поступает на систему электродов (анод и катод), подвешенную в воде. Привлеченную током рыбу выбирают сачками.

Аналогичная установка ЭЛУ-2 отличается тем, что работает на постоянном импульсном токе и может использоваться в водоемах с более широким диапазоном электропроводности воды. Бессетевой электродов рыбы с помощью рыбонасосов впервые был применен на лове камчатских лососевых на реках Озерной и Явиной.

В СССР применяется также батарейный агрегат "Пеликан", предназначенный для лова рыбы, сконцентрированной на глубине 1,5-2 м; его производительность - более 1-2 ц рыбы в час. Аналогичные агрегаты разработаны и в других странах.

В рыбном хозяйстве применяются и так называемые электрозаградители, отпугивающие или останавливающие рыбу. С помощью таких установок рыбу заставляют двигаться в определенном направлении. В этом случае электрическое поле, как правило, неподвижно и расположено поперек движения реки. Рыба, оказавшаяся в зоне действия поля, останавливается или уплывает обратно.

Устройство, создающее электрическое поле для отпугивания акул, разработано в США. Прибор устанавливается на траулере и ежесекундно излучает мощные импульсы длительностью 10 м/с через два буксируемых электрода. Малогабаритная модификация этого прибора, собранного на транзисторах, используется водолазами (электроды помещаются в скафандр). Источником тока в нем служат обычные сухие батареи, емкость которых рассчитана на 8-10 ч работы. Эксперименты показали, что акулы не приближаются к водолазу, снабженному подобным прибором, ближе, чем на 2 м. Прибор собрал на транзисторах и заключен в водонепроницаемый корпус из эпоксидной смолы.

Сотрудниками Государственного научно-исследовательского института озерного и речного хозяйства (ГосНИОРХ) разработана электрорыбозаградительная установка, предназначенная для отпугивания рыбы от гидротехнических сооружений: турбин гидростанций, оросительных каналов, в которых рыбы травмируются и гибнут. Установка состоит из большого количества электродов - стальных труб, забитых в грунт. На электроды поступает прерывистый переменный ток.

По такому же принципу работают электрогоны, используемые при лове рыбы. В качестве примера рассмотрим электрогон типа ЭРГ 1/8-4. Он представляет собой однородную систему электродов, поддерживаемых на плаву полиэтиленовыми поплавками. На тележке, движущейся вдоль берега реки, установлен бензиновый двигатель с генератором мощностью 4 кВт, вырабатывающим ток напряжением 230 В. Через преобразователь и трансформатор ток по кабелю длиной 100 м поступает на электроды. Рыбаки, находящиеся по обоим берегам, тянут систему электродов вдоль реки, сгоняя рыбу в невод, установленный ниже по течению. Такой электрогон применяют на водоемах шириной до 50 м и глубиной до 2 м.

Методы лова, основанные на использовании электрических полей, имеют следующие преимущества: они универсальны (их можно применять для лова различных видов рыб с помощью разнообразных орудий лова) и эффективны (обеспечивают избирательность вылавливаемых рыб по виду и размеру, позволяют автоматизировать процессы лова).

Однако электродов в морских условиях находится пока еще в стадии экспериментов. Это вызвано большим расходом энергии даже при использовании полей импульсного тока. Тем не менее электролов морских рыб весьма перспективен, и в данном направлении ведутся многочисленные исследования и разработки. Так, в ГДР создана установка для электролова рыбы в море. Основа установки - импульсный генератор, вырабатывающий электрические импульсы; определены форма и частота, необходимые в различных условиях лова. Они подаются по кабелю на электроды, которыми оснащен трал, и создают электрическое поле. Действие поля распространяется на рыбу, находящуюся в его зоне, и препятствует ее уходу из орудия лова. Мощность импульсного генератора 75 кВт. В зависимости от напряжения электрическое поле может вызывать у рыб реакцию отпугивания или наркоза и даже гибель от шока. Эта установка позволяет вести лов на глубинах до 700 м. Уловы океанских траулеров ГДР, оснащенных такими установками, увеличились в среднем на 30%.

В СССР первые практические результаты бессетевого электролова с помощью рыбонасоса в морских условиях были получены в 1963 г. при ловле сайры. Рыбу сначала привлекали на свет. Затем создавали поле постоянного тока: катодом служил корпус судна, а анодом, к которому сайра подходила в результате анодной реакции,- всасывающие устройства рыбонасоса (рис. 18).

Основные препятствия на пути промышленного освоения такого способа лова - малая зона, в которой можно вызывать у рыб анодную реакцию. Опыты в этом направлении продолжаются, и установки бессетевого лова совершенствуются. Было, например, применено комбинированное воздействие на рыб полей импульсного и переменного непрерывного токов.

В 1971 г. на судне ГДР "Айсберг" специалисты ГДР и СССР проводили испытания устройства для электролова, в котором рыбонасос использовался совместно с сетным мешком (рис. 19). Это позволило вести лов на различных глубинах и отказаться от громоздких шлангов рыбонасоса.

Широкое промышленное внедрение различных способов электролова в море станет возможным в ближайшие годы.

Большое практическое значение имеет сопоставление биологических систем электролова, используемых электрическими рыбами, с существующими в настоящее время аппаратами промышленного электролова промысловых рыб. Приемы лова, используемые сильноэлектрическими рыбами, характер образуемых или импульсов и полей отработаны в процессе эволюции и, по-видимому, являются оптимальными. Отличие действия электрических полей рыб по сравнению с полями агрегатов, созданных человеком, заключается в следующем. Все электроловильные агрегаты характеризуются пассивным режимом работы, т. е. параметры образуемых ими электрических полей неизменны. Однако чувствительность рыб разных видов к электрическому току и их реакции на действие электрических полей различны. Разнообразны также результаты воздействия одного и того же электрического поля на рыб определенного вида, но разных размеров. Воздействие на рыб электрических полей зависит, как уже говорилось, от температуры воды, ее электропроводности, содержания кислорода, времени года, физиологического состояния, а также от характера электрического поля.

Таким образом, на поведение рыб при действии на них электрических полей влияют многочисленные факторы, которые в процессе лова могут изменяться. Между тем это не учитывалось при разработке существующих генераторов для электролова рыб. В этом отношении природа пока опережает человека. Электрические рыбы, использующие свои электрические поля для тех же целей, "работают" качественно иным образом - в активном режиме.

Все сильноэлектрические рыбы устанавливают активный контакт со своей жертвой (или врагом). Этот контакт осуществляется с помощью различных механизмов; зрения, слуха, осязания на расстоянии (использование органов боковой линии), а также пассивного или активного (локационного) электрического чувства. Электрические рыбы - угорь, сом, скаты, некоторые звездочеты - на расстоянии следят за поведением своих жертв или врагов и, оценив их и свои возможности, применяют биоэлектрические поля определенной мощности, конфигурации и периодичности излучения. В результате достигаемый эффект бывает, как правило, оптимален. Так, сом, не имеющий электролокационной системы, оценивает свою жертву, активно двигаясь и излучая сильные электрические разряды. Разряды стимулируют жертву, заставляя ее активно двигаться и создавать потоки воды, благодаря чему сом получает информацию о жертве с помощью органов чувств боковой линии. В соответствии с размером жертвы он использует разряды определенного характера.

Таким образом, основное принципиальное отличие искусственных систем электролова от природных - отсутствие контроля над состоянием и поведением объекта лова и управления работой электрогенератора. Иными словами, отсутствуют обратная связь и система управления по заданной программе. Кибернетический подход при разработке электрических устройств для привлечения или отпугивания рыб, несомненно, перспективен. Такие устройства позволят вылавливать рыбу определенного вида и не травмировать других рыб.

Другое преимущество природных приемов лова и отпугивания рыб, основанных на применении электрических полей, состоит в том, что электрические рыбы, как правило, используют комбинации сигналов разной модальности. Параллельно с генерированием электрических полей определенного характера они излучают электрические поля иных параметров, звуки, оптические сигналы, а также используют побочные действия электрического тока (гидродинамические возмущения, обогащение воды кислородом). Угорь, например, во время охоты часто комбинирует постоянное и импульсные поля. В заморных водоемах его разряды обогащают воду кислородом, который и привлекает к угрю мелких рыб и лягушек. Американский звездочет подманивает жертву, периодически выбрасывая красный язычок, похожий на червяка. Хищник оглушает электрическим разрядом подплывающих рыб и захватывает их.

Электрический сом в оборонительных ситуациях совместно с электрическими разрядами испускает характерные резкие шипящие звуки. Такие звуки, хорошо распространяющиеся в воде, усиливают действие электрических полей (безусловнорефлекторный раздражитель) и приобретают значение сигнала предупреждения (условнорефлекторная реакция). Воздействие электрических пульсирующих полей, сопровождающихся акустической пульсацией такой же частоты, может привести верховку в шоковое состояние (электронаркоз), хотя напряженность этих полей недостаточна для достижения подобного результата.

Эффективность воздействия на рыб электрических полей в комбинации с другими сигналами очевидна. Между тем в практике рыбного хозяйства разработки устройств, основанных на комплексном действии различных сигналов, только начинаются. Так, при разработке некоторых приемов бессетевого лова электрические поля удачно комбинируются со светом.

В Мексиканском заливе была испытана система, которая состояла из стоящей на якоре платформы, окруженной большим количеством пластиковых плотов, напоминающих по форме палатки. Известно, что в дневное время некоторые виды рыб ищут затемненные места, где чувствуют себя в большей безопасности, и собираются под плавающими на поверхности воды предметами. В данном случае рыбы днем собирались под плотами, а с наступлением темноты свет электрических ламп привлекал их к центральной платформе, где под воздействием электрического поля они сразу же попадали в зону всасывания рыбонасоса.

Для отпугивания рыб от плотин эффективно применение электрических полей в сочетании со звуковыми сигналами. В спортивном рыболовстве возможно применение электрических удочек, привлекающих рыбу с помощью двух различных раздражителей: обычной, "зрительной", приманки и электрического поля, вызывающего у рыб анодную реакцию - стремление приблизиться к положительному электроду.

Таким образом, одно из перспективных направлений при разработке новых приемов использования электрических полей в рыбном хозяйстве - комбинирование их с другими сигналами.

Большой интерес для электробиологии представляет сопоставление полей, используемых электрическими рыбами для лова и обороны, с полями, применяемыми в практике рыболовства. Все рыбы и в пресной и в морской воде создают импульсные электрические поля: в морской воде, в связи с ее большей проводимостью, они характеризуются невысокой напряженностью и значительной плотностью тока, в пресных водоемах имеют высокую напряженность и малую плотность тока. Электрические поля постоянного тока рыбы не применяют, по-видимому, из-за большого расхода энергии для их генерации.

Каковы характеристики импульсных электрических полей рыб и их отличие от полей, разработанных экспериментально и применяемых в практике рыболовства?

Относительно действия на рыб искусственных импульсных электрических полей существуют различные, иногда противоречивые мнения. Большинство исследователей, сопоставляя действие импульсных и постоянных или переменных полей, утверждают, что импульсные поля обычно не возбуждают у рыб анодной реакции, а лишь отпугивают их. Однако электрические рыбы, используя импульсные поля, фактически управляют поведением своих жертв или врагов, заставляя их двигаться к себе или спасаться бегством. Характерно, что импульсные поля, применяемые всеми электрическими рыбами для привлечения жертв и обороны, различны.

Так, охотничьи разряды сома состоят из гораздо большего количества импульсов, чем для обороны. Если оборонные включают 3-67 импульсов, то охотничьи - 14- 462 импульсов (в среднем меньше 300). Другая отличительная особенность - различие в характере изменения частоты их следования. В оборонных разрядах частота следования импульсов снижается резко быстро, в охотничьих - медленно, постепенно.

Длительность и число импульсов в охотничьих разрядах связаны с соотношением размеров сома и его жертвы. При захвате и заглатывании мелких объектов разряды относительно коротки - в среднем 71,2 импульса. Сом длиной 16 см при захвате рыбы размером 5,5 см (менее 30% длины сома) генерирует до 297 импульсов (при средней продолжительности разряда 4,8 с). В технике электролова, основанного на импульсных полях постоянного тока, количеству импульсов, обеспечивающих анодные реакции, придается большое значение.

По мнению некоторых ученых, от числа импульсов зависит эффект привлечения, отпугивания или оглушения рыбы. Исследования показали, что для каждого вида (и размера) рыб в привлекающем или отпугивающем их электрическом разряде существует оптимальное количество импульсов. В процессе охоты частота следования импульсов у сома меняется. Она увеличивается или уменьшается в зависимости от поведения и состояния жертвы. В самом начале частота следования импульсов достигает максимальной величины (до 150 импульсов з секунду при температуре 28°), а в конце она падает. Но снижение частоты в зависимости от поведения объекта может смениться повторным и даже многократным ее возрастанием. Амплитуда разрядов и импульсов сома относительно невелика (180-360 В). У сома длиной 21 см средняя мощность разряда обычно составляет 8 Вт, а максимальная мощность каждого импульса - 32 Вт.

Ученые, исследовавшие действие на рыб сильных электрических полей, установили, что анодная реакция проявляется у них при определенных значениях как частоты импульсов, так и напряжения. Для пресноводных рыб длиной от 6 до 27 см критические значения частоты следования импульсов, вызывающих анодную реакцию, составляют 30-100 импульсов в секунду. Разряды с более высокой частотой импульсов при тех же величинах амплитуды вызывают у рыб электронаркоз. Таким же образом влияет на рыб и увеличение амплитуды (напряжения) импульсов.

Токи, используемые при электролове пресноводных рыб, обычно достигают напряжения 800 В при мощности импульсов 80-400 Вт. Поэтому естественно, что электрические агрегаты, работающие в постоянном режиме (при неизменной частоте и напряжении импульсов), создают не только зону привлечения (вдали от электродов), но и зону наркоза вблизи электродов, в которой рыба впадает в шок и гибнет. Именно в связи с этим применение существующих агрегатов для лова рыбы наносит существенный ущерб рыбному хозяйству.

Импульсы же, используемые для охоты электрическими рыбами (угрем, сомами и др.), имеют характерную форму и продолжительность. Как правило, это импульсы с крутым фронтом нарастания тока и постепенным его снижением. Другими словами, в начале импульса напряжение быстро повышается, а затем постепенно снижается. У электрического угря такие импульсы имеют пилообразную форму (см. рис. 4), у электрического сома форма импульсов сходна с формой нервно-мышечных импульсов (см. рис. 5).

Импульс электрического сома длиной 15,5 см имеет длительность, равную 1,88 мс. Резкое возрастание амплитуды длится 0,66 мс, а постепенное снижение - 1,22 мс.

Целесообразно сопоставить форму и продолжительность импульсов электрических рыб с аналогичными характеристиками оптимально действующих импульсов, полученных в опытах по действию на рыб искусственных электрических полей. Оказывается, что наиболее эффективно на рыб действуют именно импульсы с крутым фронтом нарастания тока и постепенным его снижением при продолжительности импульса 1-1,5 мс. Это же подтверждают некоторые ученые, исходя из представлений физиологии нервно-мышечной системы.

Экспериментально установлено, что при малых значениях продолжительности импульсов (менее 1 мс) наименьшее напряжение, при котором у рыб появляется первичная реакция, требуется при использовании импульсов прямоугольной формы. Почему же импульсы некоторых электрических рыб "неоптимальны"? Ответ довольно прост. Для генерации прямоугольных импульсов (продолжительностью менее 1 мс) требуется больший расход мощности, чем для импульсов, используемых электрическими рыбами.

Таким образом, работа природных систем электролова и работа промышленных электроагрегатов по принципу действия различны, хотя форма импульсов электрических рыб близка к применяемой в промысле. Природные основаны на комплексном действии сигналов; промышленные, как правило,- на использовании только электрического поля. Первые характеризуются активным режимом, вторые - пассивным. Импульсы рыб, используемые при охоте, отличаются от искусственных большей длительностью, большей частотой следования и сравнительно малой мощностью. При этом надо иметь в виду, что создаваемые рыбами электрические поля невелики. Очевидно, что принципы действия природных систем электролова рыб более эффективны, чем используемые в промышленном рыболовстве, и это необходимо учитывать при разработке и совершенствовании электроловильных установок.

Исключительные перспективы открывает моделирование электрических систем локации и связи рыб. Передача сигналов в воде с помощью электрических полей имеет большое преимущество, так как радиоволны в водной среде практически не распространяются, а недостатком акустической локации и связи является высокий уровень фоновых шумовых помех. Как известно, пока электрической связи в подводной технике не существует. В настоящее время как в Советском Союзе, так и за рубежом ведутся серьезные работы по созданию подобной аппаратуры. Проведенное советскими исследователями неполное техническое моделирование электрической системы связи рыб уже привело к разработке устройства, позволяющего осуществлять передачу информации из воды в воздух. Дальнейшие работы в этой области будут иметь огромное значение для развития техники подводной связи, столь необходимой, например, в океанологии и рыбном хозяйстве.

В теплых и тропических морях, в мутных реках Африки и Южной Америки живет несколько десятков видов рыб, способных временами или постоянно испускать электрические разряды разной силы. Своим электрическим током эти рыбы не только пользуются для защиты и нападения, но и сигнализируют им друг другу и обнаруживают заблаговременно препятствия (электролокация). Электрические органы встречаются только у рыб. У других животных эти органы пока не обнаружены.

Электрические рыбы существуют на Земле уже миллионы лет. Их остатки найдены в очень древних слоях земной коры - в силурийских и девонских отложениях. На древнегреческих вазах встречаются изображения электрического морского ската торпедо. В сочинениях древнегреческих и древнеримских писателей-натуралистов немало упоминаний о чудесной, непонятной силе, которой наделен торпедо. Врачи древнего Рима держали этих скатов у себя в больших аквариумах. Они пытались использовать торпедо для лечения болезней: пациентов заставляли прикасаться к скату, и от ударов электрического тока больные будто бы выздоравливали. Даже в наше время на побережье Средиземного моря и атлантическом берегу Пиренейского полуострова пожилые люди бродят иногда босиком по мелководью, надеясь излечиться от ревматизма или подагры электричеством торпедо.

Электрический скат торпедо.

Очертания тела торпедо напоминают гитару длиной от 30 см до 1,5 м и даже до 2 м. Его кожа принимает цвет, сходный с окружающей средой (см. ст. «Окраска и подражание у животных»). Различные виды торпедо живут в прибрежных водах Средиземного и Красного морей, Индийского и Тихого океанов, у берегов Англии. В некоторых бухтах Португалии и Италии торпедо буквально кишат на песчаном дне.

Электрические разряды торпедо очень сильны. Если этот скат попадет в рыбачью сеть, его ток может пройти по влажным нитям сети и ударить рыбака. Электрические разряды защищают торпедо от хищников - акул и осьминогов - и помогают ему охотиться за мелкой рыбой, которую эти разряды парализуют или даже убивают. Электричество у торпедо вырабатывается в особых органах, своеобразных «электрических батареях». Они находятся между головой и грудными плавниками и состоят из сотен шестигранных столбиков студенистого вещества. Столбики отделены друг от друга плотными перегородочками, к которым подходят нервы. Верхушки и основания столбиков соприкасаются с кожей спины и брюха. Нервы, подходящие к электрическим органам, имеют внутри «батарей» около полумиллиона окончаний.

Скат дископиге глазчатый.

За несколько десятков секунд торпедо испускает сотни и тысячи коротких разрядов, идущих потоком от брюхи к спине. Напряжение тока у разных видов скатов колеблется от 80 до 300 В при силе тока в 7-8 А. В наших морях живут несколько видов колючих скатов райя, среди них черноморский скат - морская лисица. Действие электрических органов у этих скатов гораздо слабее, чем у торпедо. Можно предполагать, что электрические органы служат райя для связи друг с другом, вроде «беспроволочного телеграфа».

В восточной части тихоокеанских тропических вод живет скат дископиге глазчатый. Он занимает как бы промежуточное положение между торпедо и колючими скатами. Питается скат мелкими рачками и легко их добывает, не применяя электрического тока. Его электрические разряды никого не могут убить и, вероятно, служат лишь для того, чтобы отгонять хищников.

Скат морская лисица.

Электрические органы есть не только у скатов. Тело африканского речного сома малаптеруруса обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов его достигает 360 В, оно опасно даже для человека и, конечно, гибельно для рыб.

Ученые установили, что африканская пресноводная рыба гимнархус всю жизнь непрерывно испускает слабые, но частые электрические сигналы. Ими гимнархус как бы прощупывает пространство вокруг себя. Он уверенно плавает в мутной воде среди водорослей и камней, не задевая телом ни за какие препятствия. Такой же способностью наделены африканская рыба мормирус и родственники электрического угря - южноамериканские гимноты.

Звездочет.

В Индийском, Тихом и Атлантическом океанах, в Средиземном и Черном морях живут небольшие рыбы, до 25 см, редко до 30 см длиной, - звездочеты. Обычно они лежат на прибрежном дне, подкарауливая проплывающую сверху добычу. Поэтому их глаза расположены на верхней стороне головы и смотрят вверх. Отсюда происходит название этих рыб. Некоторые виды звездочетов имеют электрические органы, которые находятся у них на темени, служат, вероятно, для сигнализации, хотя их действие ощутимо и для рыбаков. Тем не менее рыбаки беспрепятственно вылавливают немало звездочетов.

В южноамериканских тропических реках живет электрический угорь. Это серо-синяя змееобразная рыба длиной до 3 м. На долю головы и грудобрюшной части приходится лишь 1 / 5 ее тела. Вдоль остальных 4 / 5 тела с обеих сторон расположены сложные электрические органы. Они состоят из 6-7 тыс. пластинок, отделенных друг от друга тонкой оболочкой и изолированных прокладкой из студенистого вещества.

Пластинки образуют своего рода батарею, разряд которой направлен от хвоста к голове. Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Плохо приходится от угрей и людям, купающимся в реке: электрический орган угря развивает напряжение в несколько сотен вольт.

Угорь создает особенно сильное напряжение тока, когда он изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо. Электрический разряд угря привлекает других угрей, находящихся поблизости.

Этим свойством можно воспользоваться. Разряжая в воду любой источник электричества, удается привлечь целое стадо угрей, надо только подобрать соответствующие напряжение тока и частоту разрядов. Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии.

Исследования советских ученых показали, что многие из обычных, так называемых неэлектрических рыб, которые не имеют специальных электрических органов, все же в состоянии возбуждения способны создавать в воде слабые электрические разряды.

Эти разряды образуют вокруг тела рыб характерные биоэлектрические поля. Установлено, что слабые электрические поля есть у таких рыб, как речной окунь, щука, пескарь, вьюн, карась, красноперка, горбыль и др.

В живой природе существует немало процессов, связанных с электрическими явлениями. Рассмотрим некоторые из них.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Если взять лимон или яблоко и разрезать, а потом приложить к кожуре два электрода, то они не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой к внутренней части мякоти, то появится разность потенциалов, и гальванометр отметит появление силы тока.

Изменение потенциала некоторых растительных тканей в момент их разрушения исследовал индийский ученый Бос. В частности, он соединил внешнюю и внутреннюю часть горошины гальванометром. Горошину он нагревал до температуры до 60С, при этом был зарегистрирован электрический потенциал в 0,5 В. Этим же ученым была исследована подушечка мимозы, которую он раздражал короткими импульса ми тока.

При раздражении возникал потенциал действия. Реакция мимозы была не мгновенной, а с запаздыванием на 0,1 с. Кроме того, в проводящих путях мимозы распространялся другой тип возбуждения, так называемая медленная волна, появляющаяся при повреждениях. Эта волна минует по душечки, достигая стебля, вызывает возникновение потенциала действия, передающегося вдоль стебля и приводящего к опусканию близлежащих листьев. Мимоза реагирует движением листа на раздражение подушечки током 0,5 мкА. Чувствительность языка человека в 10 раз ниже.


Не менее интересные явления, связанные с электричеством, можно обнаружить и у рыб. Древние греки остерегались встречаться в воде с рыбой, которая заставляла цепенеть животных и людей. Эта рыба была электрическим скатом и но сила название торпеда.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная - изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

У многих рыб (гимнарха, рыбыножа, гнатонемуса) голова заряжается положительно, хвост - отрицательно, а вот у электрического сома, наоборот, хвост - положительно, а голова - отрицательно. Свои электрические свойства рыбы используют как для атаки, так и для защиты, а также для того, чтобы отыскивать жертву, ориентироваться в мутной воде, опознавать опасных противников.

Существуют также слабоэлектрические рыбы. Они не имеют каких либо электрических органов. Это обыкновенные рыбы: караси, карпы, пескари и др. Они чувствуют электрическое поле и излучают слабый электрический сигнал.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки - американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду, но обмануть нильского сомика и гимнархуса ему не удалось. Рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле, значительно большее по силе, чем возникающее вокруг обычных живых клеток.

С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

Рыбы соперники определяют силу своего противника по силе излучаемых им сигналов. Другие животные таких чувств не имеют. Почему же только рыбы наделены этим свойством?

Рыбы живут в воде. Морская вода прекрасный проводник. Электрические волны распространяются в ней, не затухая, на тысячи километров. Кроме того, рыбы имеют физиологические особенности строения мышц, которые со временем стали “живыми генераторами”.

Способность рыб аккумулировать электрическую энергию, делает их идеальными аккумуляторами. Если бы удалось подробнее разобраться с деталями их работы, произошел бы переворот в технике, в плане создания аккумуляторов. Электролокация и подводная связь рыб позволила разработать систему для беспроводной связи между рыболовным судном и тралом.

Уместно было бы закончить высказыванием, которое было написано рядом с обычным стеклянным аквариумом с электрическим скатом, представленном на выставке Английского научного Королевского общества в 1960 г. В аквариум были опущены два электрода, к которым был подключен вольтметр. Когда рыба находилась в состоянии покоя, вольтметр показывал 0 В, при движении рыбы - 400 В. Природу этого электрического явления, наблюдаемого задолго до организации Английского Королевского общества, человек разгадать до сих пор не может. Тайна электрических явлений в живой природе и сейчас будоражит умы ученых и требует своего решения.

Долгое время принято было считать, что электрические явления играют важную роль в жизни только тех рыб, у которых есть электрогенераторные и электровоспринимающие органы. Это, как говорилось, сильноэлектрические и слабоэлектрические рыбы, а также те виды, которые лишены специальных органов, производящих электрические разряды, но имеют при этом органы электрочувствительности - электрорецепторы. К ним относятся акулы, скаты, химеры, все осетрообразные, а также сомы и ряд экзотических рыб, таких как двоякодышащие, африканские полиптерусы и, наконец, знаменитая латимерия. Понятно, что из всего этого списка для нас интересны, разве что, сомы.

Все же остальные рыбы, а к ним относятся все наши традиционные "рыболовные" виды, никаких специальных органов для восприятия электрических полей не имеют, и при обсуждении темы электричества в учебниках по ихтиологии вообще не упоминаются. Я, по крайней мере, не нашел таких упоминаний ни в одном известном мне руководстве, как отечественном, так и зарубежном, в том числе и последних лет издания.

Между тем, существует достаточно специальных экспериментальных исследований, в которых показано, что многие "неэлектрические" виды, во-первых, способны генерировать вокруг себя слабые электрические поля, а во-вторых, обладают способностью чувствовать электрическое поле и оценивать его параметры. Другое дело, что до сих пор непонятно, каким образом, с помощью каких органов чувств они это делают.

Почему эти результаты не попали на страницы учебников - другой вопрос, но мы вправе сделать вывод, что электричество является одним из факторов, влияющих на поведение не только сильно- или слабоэлектрических, но всех вообще рыб, в том числе и тех, которых мы с вами ловим. Поэтому к рыбалке эта тема имеет самое прямое отношение (даже если не брать в рассмотрение электроудочку).

Поля рыб - "неэлектриков"

Впервые слабое электрическое поле у неэлектрической рыбы было зарегистрировано у морской миноги американцами Клиеркопером и Сибакином в 1956 году. Поле фиксировалось специальной аппаратурой на расстоянии нескольких миллиметров от тела миноги. Оно ритмично возникало и исчезало синхронно с дыхательными движениями.

В 1958 году было показано, что электрическое поле, причем более сильное, чем у миноги, может генерировать вокруг себя и речной угорь. Наконец, начиная с 1960-х годов способность рыб, ранее считавшихся неэлектрическими, излучать слабые электрические разряды была установлена на многих морских и пресноводных видах.

Таким образом, сегодня совершенно не приходится сомневаться в том, что все без исключения рыбы производят вокруг себя электрические поля. Более того, у многих видов параметры этих полей измерены. Несколько примеров величин разрядов неэлектрических рыб приведены в таблице внизу страницы (замеры проводились на расстоянии около 10 см от рыбы).

Электрическая активность рыб сопровождается постоянным и импульсными электрическими полями. Постоянное поле рыбы имеет характерный рисунок - голова относительно хвоста заряжена положительно, и разность потенциалов между этими участками колеблется у разных видов от 0,5 до 10 мВ. Источник поля расположен в районе головы.

Импульсные поля имеют сходную конфигурацию, они создаются разрядами частотой от долей герца до полутора килогерц.

Чувствительность рыб - "неэлектриков"

Чувствительность к электрическим полям у разных видов рыб без электрорецепторов сильно варьирует. У одних она сравнительно невысока (в пределах десятков милливольт на сантиметр), у других сопоставима с чувствительностью рыб, обладающих специальными органами электрического чувства. Например, американский угорь в пресной воде чувствует поле величиной всего 6,7 мкВ/см. Тихоокеанские лососи в морской воде способны ощущать поле величиной 0,06 мкВ/см. При грубом пересчете, с учетом большего сопротивления пресной воды, это означает, что в пресных водах лососи способны чувствовать примерно 6 мкВ/см. Очень высокой электрочувствительностью обладает и наш обыкновенный сом. Способность воспринимать слабые электрические поля установлена и у таких видов, как карп, карась, щука, колюшка, гольян.

По мнению большинства ученых, роль электрорецепторов у всех этих рыб играют органы боковой линии. Но считать этот вопрос окончательно решенным нельзя. Вполне может оказаться, что у рыб существуют и еще какие-то механизмы, которые позволяют им чувствовать электричество, и о которых мы пока даже не подозреваем.

Электрический мир

Итак, мы приходим к выводу о том, что все рыбы, хотя и в разной степени, обладают электрочувствительностью, и все рыбы, опять же в разной степени, создают вокруг себя электрические поля. У нас, следовательно, есть все основания предполагать, что эти свои электрические способности рыбы как-то используют в своей повседневной жизни. Каким же образом, и в каких областях жизнедеятельности они могут это делать? Прежде всего, отметим, что электрочувствительность применяется рыбами (угорь, сельди, лососи) для ориентации в океане. Кроме того, у рыб развита система электрической коммуникации - взаимодействие друг с другом на основе обмена электрической информацией. Это используется при нересте, при агрессивных взаимодействиях (например, при охране своей территории), а также для синхронизации движений рыб в стае.

Но нам интереснее те аспекты, которые более непосредственно связаны с рыбалкой - поиск пищи, различение съедобных и несъедобных предметов.

Прежде всего, надо иметь в виду, что электрические поля создают вокруг себя не только рыбы, но и другие животные, в том числе, и организмы, которыми рыбы питаются. Например, слабое электрическое поле возникает в области брюшка плывущего рачка-бокоплава. Для рыб такие поля - ценный источник информации. Широко известны опыты с акулами, которые легко находят и пытаются откопать зарытый в песок миниатюрный электрогенератор, имитирующий своими разрядами биотоки рыбы.

Но то - акулы. А интересуют ли электрические поля пресноводных рыб? Очень любопытные и поучительные опыты на этот счет проводились еще в 1917 году с американским сомиком амиурсом. Авторы этих экспериментов занимались тем, что совали в аквариум с амиуросом палочки, сделанные из разных материалов - стекла, дерева, металла. Оказалось, что присутствие металлической палочки сомик ощущал с расстояния в несколько сантиметров, а, например, на стеклянную палочку реагировал только при ее прикосновении. Таким образом, амиурус чувствовал слабые гальванические токи, которые возникали при помещении металла в воду.

Еще интереснее, что реакция сомиков на металл зависела от интенсивности тока. Если поверхность соприкосновения с водой металлической палочки составляла 5-6 см2, у сомиков возникала оборонительная реакция - они уплывали. Если же поверхность контакта с водой была меньше (0,9-2,8 см2), то у рыб возникала положительная реакция - они подплывали и "клевали" место контакта металла с водой.

Когда читаешь про такие вещи, возникает большой соблазн потеоретизировать на тему о площади поверхности мормышки, о биметаллических мормышках и блеснах, представляющих собой, по сути, маленькие гальванические электрогенераторы, и тому подобных вещах. Но понятно, что теории такого рода так и останутся теориями, и любым рекомендациям, сделанным на их основе, грош цена. Взаимодействие рыбы с приманкой - процесс очень сложный, в котором участвуют самые разные факторы, и электричество среди них, скорее всего, далеко не главный. Тем не менее и о нем не стоит забывать. Во всяком случае, некоторые возможности для работы воображения и экпериментирования с приманками тут имеются. Почему бы, например, не предположить, что металлические блесны, особенно крупные, могут нести с собой чрезмерно сильное поле, которое не привлекает, а, наоборот, отпугивает рыбу? Ведь его можно убрать, покрыв блесну каким-нибудь прозрачным составом, непроводящим электричество.

И как тут не вспомнить тот примечательный факт, что вплоть до 60-х годов прошлого века финские и норвежские рыбаки при морской ловле камбалы пользовались деревянными крючками, сделанными из можжевельника. При этом они утверждали, что на деревянный крючок камбала ловится лучше, чем на металлический. А не в электричестве ли тут дело? Ну и так далее - простор для размышлений тут широкий.

Но вернемся к рыбам. Как уже говорилось в начале этой статьи, помимо восприятия чужих электрических полей, рыбы могут получать информацию об окружающем и по изменению параметров своего собственного поля. Ведь любой предмет, попадающий в поле рыбы, если он по электропроводности отличается от окружающей воды, будет неизбежно менять конфигурацию этого поля. Существует целый ряд исследований, в которых показано, что электрические разряды резко усиливаются у активно кормящихся "мирных" рыб, а также у хищников (например, у щуки) в момент броска на добычу. Причем, у ночных и сумеречных хищников это выражено сильнее, чем у дневных. Может быть, это означает, что в момент захвата пищи рыбы "включают" дополнительные каналы информации для более тщательного анализа ситуации? "Ощупывают" потенциальную добычу силовыми линиями своего поля? Рано или поздно ученые дадут ответ на этот вопрос, но нам-то ждать этого не обязательно - можно просто держать в уме такую возможность. То есть понимать, что рыба может знать об электрических свойствах нашей приманки гораздо больше, чем мы предполагаем, и, главное, чем мы сами о ней знаем. К примеру, я почти уверен, что хищники отлично "понимают", атакуя воблер, что эта "рыбка" сделана из какого-то странного материала - она меняет конфигурацию их поля иначе, чем настоящая рыба. Влияет ли это на принятие решения хищником "есть или не есть"? Вполне возможно, особенно если он не слишком голоден.

Немного лирики в заключение

Обращая внимание читателей на электрическую сторону жизни рыб, я бы совершенно не хотел, чтобы кого-нибудь это натолкнуло на мысль использовать электрочувствительность рыб для создания на этой основе некоей "безотказной" приманки, которую рыба брала бы всегда и в любых условиях. Попытки такого рода, не только в "электрической сфере", регулярно появляются на горизонте. То электроблесны, то "вкусный силикон", который хищник не то что не стремится выплюнуть, а, наоборот, спешит поскорее проглотить. Наконец, хитроумные активаторы клева, которые создают у рыбы непреодолимое чувство голода независимо от того, голодна она или сыта.

И это только немногие примеры. Темпы развития науки и технологии таковы, что вполне можно ожидать появления на рынке действительно "безотказной" снасти, которая будет ловить всегда и везде и, главное, независимо от умения и знаний того, кто ей пользуется. Тут есть сугубо этическая, а может, и эстетическая грань, за которой рыбалка уже перестает быть рыбалкой.

Поэтому тем, кто имеет чрезмерную склонность к такого рода разработкам, я хочу напомнить о простом, всем известном факте. Такая "безотказная" снасть уже изобретена и вовсю используется. Это - электроудочка.